Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740933

RESUMO

Constructing effective antidotes to reduce global health impacts induced by alcohol prevalence is a challenging topic. Despite the positive effects observed with intravenous applications of natural enzyme complexes, their insufficient activities and complicated usage often result in the accumulation of toxic acetaldehyde, which raises important clinical concerns, highlighting the pressing need for stable oral strategies. Here we present an effective solution for alcohol detoxification by employing a biomimetic-nanozyme amyloid hydrogel as an orally administered catalytic platform. We exploit amyloid fibrils derived from ß-lactoglobulin, a readily accessible milk protein that is rich in coordinable nitrogen atoms, as a nanocarrier to stabilize atomically dispersed iron (ferrous-dominated). By emulating the coordination structure of the horseradish peroxidase enzyme, the single-site iron nanozyme demonstrates the capability to selectively catalyse alcohol oxidation into acetic acid, as opposed to the more toxic acetaldehyde. Administering the gelatinous nanozyme to mice suffering from alcohol intoxication significantly reduced their blood-alcohol levels (decreased by 55.8% 300 min post-alcohol intake) without causing additional acetaldehyde build-up. Our hydrogel further demonstrates a protective effect on the liver, while simultaneously mitigating intestinal damage and dysbiosis associated with chronic alcohol consumption, introducing a promising strategy in effective alcohol detoxification.

2.
J Am Chem Soc ; 146(17): 11887-11896, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529556

RESUMO

Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.

3.
ACS Nano ; 18(8): 6690-6701, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345899

RESUMO

In the quest for a sustainable and circular economy, it is essential to explore environmentally friendly alternatives to traditional petroleum-based materials. A promising pathway toward this goal lies in the leveraging of biopolymers derived from food waste, such as proteins and polysaccharides, to develop advanced sustainable materials. Here, we design versatile hybrid materials by hybridizing amyloid nanofibrils derived by self-assembly of whey, a dairy byproduct, with chitin nanofibrils exfoliated from the two distinct allomorphs of α-chitin and ß-chitin, extracted from seafood waste. Various hydrogels and aerogels were developed via the hybridization and reassembly of these biopolymeric nanobuilding blocks, and they were further magnetized upon biomineralization with iron nanoparticles. The pH-phase diagram highlights the significant role of electrostatic interactions in gel formation, between positively charged amyloid fibrils and negatively charged chitin nanofibrils. Hybrid magnetic aerogels exhibit a ferromagnetic response characterized by a low coercivity (<50 Oe) and a high specific magnetization (>40 emu/g) at all temperatures, making them particularly suitable for superparamagnetic applications. Additionally, these aerogels exhibit a distinct magnetic transition, featuring a higher blocking temperature (200 K) compared to previously reported similar nanoparticles (160 K), indicating enhanced magnetic stability at elevated temperatures. Finally, we demonstrate the practical application of these hybrid magnetic materials as catalysts for carbon monoxide oxidation, showcasing their potential in environmental pollution control and highlighting their versatility as catalyst supports.

4.
Adv Mater ; 36(19): e2310642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38262611

RESUMO

Demand for gold recovery from e-waste grows steadily due to its pervasive use in the most diverse technical applications. Current methods of gold recovery are resource-intensive, necessitating the development of more efficient extraction materials. This study explores protein amyloid nanofibrils (AF) derived from whey, a dairy industry side-stream, as a novel adsorbent for gold recovery from e-waste. To do so, AF aerogels are prepared and assessed against gold adsorption capacity and selectivity over other metals present in waste electrical and electronic equipment (e-waste). The results demonstrate that AF aerogel has a remarkable gold adsorption capacity (166.7 mg g-1) and selectivity, making it efficient and an adsorbent for gold recovery. Moreover, AF aerogels are efficient templates to convert gold ions into single crystalline flakes due to Au growth along the (111) plane. When used as templates to recover gold from e-waste solutions obtained by dissolving computer motherboards in suitable solvents, the process yields high-purity gold nuggets, constituted by ≈90.8 wt% gold (21-22 carats), with trace amounts of other metals. Life cycle assessment and techno-economic analysis of the process finally consolidate the potential of protein nanofibril aerogels from food side-streams as an environmentally friendly and economically viable approach for gold recovery from e-waste.


Assuntos
Amiloide , Resíduo Eletrônico , Géis , Ouro , Ouro/química , Amiloide/química , Amiloide/metabolismo , Adsorção , Géis/química , Nanofibras/química
5.
ACS Appl Mater Interfaces ; 15(40): 47049-47057, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751482

RESUMO

Increasing carbon emissions have accelerated climate change, resulting in devastating effects that are now tangible on an everyday basis. This is mirrored by a projected increase in global energy demand of approximately 50% within a single generation, urging a shift from fossil-fuel-derived materials toward greener materials and more sustainable manufacturing processes. Biobased industrial byproducts, such as side streams from the food industry, are attractive alternatives with strong potential for valorization due to their large volume, low cost, renewability, biodegradability, and intrinsic material properties. Here, we demonstrate the reutilization of industrial chicken feather waste into proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. Keratin was isolated from chicken feathers via a fast and economical process, converted into amyloid fibrils through heat treatment, and further processed into membranes with an imparted proton conductivity of 6.3 mS cm-1 using a simple oxidative method. The functionality of the membranes is demonstrated by assembling them into a hydrogen fuel cell capable of generating 25 mW cm-2 of power density to operate various types of devices using hydrogen and air as fuel. Additionally, these membranes were used to generate hydrogen through water splitting and in protonic field-effect transistors as thin-film modulators of protonic conductivity via the electrostatic gating effect. We believe that by converting industrial waste into renewable energy materials at low cost and high scalability, our green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.

6.
ChemSusChem ; 16(23): e202300767, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37681554

RESUMO

Climate change caused by excessive CO2 emissions constitutes an increasingly dire threat to human life. Reducing CO2 emissions alone may not be sufficient to address this issue, so that the development of emerging adsorbents for the direct capture of CO2 from the air becomes essential. Here, we apply amyloid fibrils derived from different food proteins as the solid adsorbent support and develop aminosilane-modified amyloid fibril-templated aerogels for CO2 capture applications. The results indicate that the CO2 sorption properties of the aerogels depend on the mixing ratio of aminosilane featuring different amine groups and the type of amyloid fibril used. Notably, amine-functionalized ß-lactoglobulin (BLG) fibril-templated aerogels show the highest CO2 adsorption capacity of 51.52 mg (1.17 mmol) CO2 /g at 1 bar CO2 and 25.5 mg (0.58 mmol) CO2 /g at 400 ppm; similarly, the CO2 adsorption capacity of chitosan-BLG fibril hybrid aerogels is superior to that of pure chitosan. This study provides a proof-of-concept design for an amyloid fibril-templated hybrid material facilitating applications of protein-based adsorbents for CO2 capture, including direct air capture.


Assuntos
Aminas , Quitosana , Humanos , Amiloide , Dióxido de Carbono , Adsorção
7.
Sci Adv ; 9(26): eadg5690, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379379

RESUMO

The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2.

8.
J Mater Chem A Mater ; 11(12): 6530-6542, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968616

RESUMO

We elucidate the underlying cause of a commonly observed increase in the rate of oxygen release of an oxygen carrier with redox cycling (here specifically for the perovskite Sr0.8Ca0.2FeO3-δ ) in chemical looping applications. This phenomenon is often referred to as activation. To this end we probe the evolution of the structure and surface elemental composition of the oxygen carrier with redox cycling by both textural and morphological characterization techniques (N2 physisorption, microscopy, X-ray powder diffraction and X-ray absorption spectroscopy). We observe no appreciable changes in the surface area, pore volume and morphology of the sample during the activation period. X-ray powder diffraction and X-ray absorption spectroscopy analysis (at the Fe and Sr K-edges) of the material before and after redox cycles do not show significant differences, implying that the bulk (average and local) structure of the perovskite is largely unaltered upon cycling. The analysis of the surface of the perovskite via X-ray photoelectron and in situ Raman spectroscopy indicates the presence of surface carbonate species in the as-synthesized sample (due to its exposure to air). Yet, such surface carbonates are absent in the activated material, pointing to the removal of carbonates during cycling (in a CO2-free atmosphere) as the underlying cause behind activation. Importantly, after activation and a re-exposure to CO2, surface carbonates re-form and yield a deactivation of the perovskite oxygen carrier, which is often overlooked when using such materials at relatively low temperature (≤500 °C) in chemical looping.

9.
Angew Chem Int Ed Engl ; 62(8): e202217186, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36538473

RESUMO

Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.

10.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187760

RESUMO

Natural ecosystems offer efficient pathways for carbon sequestration, serving as a resilient approach to remove CO2 from the atmosphere with minimal environmental impact. However, the control of living systems outside of their native environments is often challenging. Here, we engineered a photosynthetic living material for dual CO2 sequestration by immobilizing photosynthetic microorganisms within a printable polymeric network. The carbon concentrating mechanism of the cyanobacteria enabled accumulation of CO2 within the cell, resulting in biomass production. Additionally, the metabolic production of OH- ions in the surrounding medium created an environment for the formation of insoluble carbonates via microbially-induced calcium carbonate precipitation (MICP). Digital design and fabrication of the living material ensured sufficient access to light and nutrient transport of the encapsulated cyanobacteria, which were essential for long-term viability (more than one year) as well as efficient photosynthesis and carbon sequestration. The photosynthetic living materials sequestered approximately 2.5 mg of CO2 per gram of hydrogel material over 30 days via dual carbon sequestration, with 2.2 ± 0.9 mg stored as insoluble carbonates. Over an extended incubation period of 400 days, the living materials sequestered 26 ± 7 mg of CO2 per gram of hydrogel material in the form of stable minerals. These findings highlight the potential of photosynthetic living materials for scalable carbon sequestration, carbon-neutral infrastructure, and green building materials. The simplicity of maintenance, coupled with its scalability nature, suggests broad applications of photosynthetic living materials as a complementary strategy to mitigate CO2 emissions.

11.
Discov Chem Eng ; 2(1): 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337364

RESUMO

Thermochemical redox cycles such as chemical looping combustion (CLC) are an economically promising CO2 capture technology that rely on the combustion of a hydrocarbon fuel with lattice oxygen that is derived from a solid oxygen carrier. The oxygen carrier is typically regenerated with air. To increase the agglomeration resistance and redox stability of the oxygen carriers, the active phase is often stabilized with high Tammann temperature ceramics, resulting in the formation of so-called cermet structures. It has been hypothesized that the redox performance of the cermets depends critically on the conduction pathways for solid-state ionic diffusion and the activation energy for charge transport. Here, we investigate the influence of the formation of a percolation network on the electrical conductivity and the rate of oxidation for CeO2-stabilized Cu. We found that for oxygen carriers that contained 60 wt. % CuO, the charge transport occurred predominately via Cu/CuO conduction pathways. Below the percolation threshold of CuO, the conduction of charge carriers took place via CeO2 grains, which formed a continuous network. The measurements of charge transport and redox characteristics confirmed that the activation energy for charge transport through the cermet increased with decreasing Cu content. This indicates that the solid-state diffusion of charge carriers plays an important role during re-oxidation. Supplementary Information: The online version contains supplementary material available at 10.1007/s43938-022-00013-2.

12.
Nanoscale ; 14(45): 16816-16828, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36250268

RESUMO

Improving the cyclic CO2 uptake stability of CaO-based solid sorbents can provide a means to lower CO2 capture costs. Here, we develop nanostructured yolk(CaO)-shell(ZrO2) sorbents with a high cyclic CO2 uptake stability which outperform benchmark CaO nanoparticles after 20 cycles (0.17 gCO2 gSorbent-1) by more than 250% (0.61 gCO2 gSorbent-1), even under harsh calcination conditions (i.e. 80 vol% CO2 at 900 °C). By comparing the yolk-shell sorbents to core-shell sorbents, i.e. structures with an intimate contact between the stabilizing phase and CaO, we are able to identify the main mechanisms behind the stabilization of the CO2 uptake. While a yolk-shell architecture stabilizes the morphology of single CaO nanoparticles over repeated cycling and minimizes the contact between the yolk and shell materials, core-shell architectures lead to the formation of a thick CaZrO3-shell around CaO particles, which limits CO2 transport to unreacted CaO. Hence, yolk-shell architectures effectively delay CaZrO3 formation which in turn increases the theoretically possible CO2 uptake since CaZrO3 is CO2-capture-inert. In addition, we observe that yolk-shell architectures also improved the carbonation kinetics in both the kinetic- and diffusion-controlled regimes leading to a significantly higher cyclic CO2 uptake for yolk-shell-type sorbents.

13.
Chem Commun (Camb) ; 58(33): 5104-5107, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388383

RESUMO

A sustainable hybrid aerogel based on ß-lactoglobulin amyloid fibril/UiO-66-NH2 is developed for environmental remediation. The hybrid aerogel's CO2 capture and water purification performances were investigated. The hybrid aerogel can achieve CO2 capture and possesses excellent adsorption capacities for several heavy metals, dyes, and organic solvents.


Assuntos
Recuperação e Remediação Ambiental , Purificação da Água , Adsorção , Amiloide , Dióxido de Carbono , Estruturas Metalorgânicas , Ácidos Ftálicos
14.
JACS Au ; 2(12): 2731-2741, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36590255

RESUMO

MgO-based CO2 sorbents promoted with molten alkali metal nitrates (e.g., NaNO3) have emerged as promising materials for CO2 capture and storage technologies due to their low cost and high theoretical CO2 uptake capacities. Yet, the mechanism by which molten alkali metal nitrates promote the carbonation of MgO (CO2 capture reaction) remains debated and poorly understood. Here, we utilize 18O isotope labeling experiments to provide new insights into the carbonation mechanism of NaNO3-promoted MgO sorbents, a system in which the promoter is molten under operation conditions and hence inherently challenging to characterize. To conduct the 18O isotope labeling experiments, we report a facile and large-scale synthesis procedure to obtain labeled MgO with a high 18O isotope content. We use Raman spectroscopy and in situ thermogravimetric analysis in combination with mass spectrometry to track the 18O label in the solid (MgCO3), molten (NaNO3), and gas (CO2) phases during the CO2 capture (carbonation) and regeneration (decarbonation) reactions. We discovered a rapid oxygen exchange between CO2 and MgO through the reversible formation of surface carbonates, independent of the presence of the promoter NaNO3. On the other hand, no oxygen exchange was observed between NaNO3 and CO2 or NaNO3 and MgO. Combining the results of the 18O labeling experiments, with insights gained from atomistic calculations, we propose a carbonation mechanism that, in the first stage, proceeds through a fast, surface-limited carbonation of MgO. These surface carbonates are subsequently dissolved as [Mg2+···CO3 2-] ionic pairs in the molten NaNO3 promoter. Upon reaching the solubility limit, MgCO3 crystallizes at the MgO/NaNO3 interface.

15.
Chem Rev ; 121(20): 12681-12745, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34351127

RESUMO

Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.


Assuntos
Dióxido de Carbono , Óxidos , Adsorção , Aminas/química , Dióxido de Carbono/química , Óxidos/química , Temperatura
16.
Ind Eng Chem Res ; 60(9): 3516-3531, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33840889

RESUMO

This paper focuses on the experimental demonstration of a three-stage GST (gas switching technology) process (fuel, steam/CO2, and air stages) for syngas production from methane in the fuel stage and H2/CO production in the steam/CO2 stage using a lanthanum-based oxygen carrier (La0.85Sr0.15Fe0.95Al0.05O3). Experiments were performed at temperatures between 750-950 °C and pressures up to 5 bar. The results show that the oxygen carrier exhibits high selectivity to oxidizing methane to syngas at the fuel stage with improved process performance with increasing temperature although carbon deposition could not be avoided. Co-feeding CO2 with CH4 at the fuel stage reduced carbon deposition significantly, thus reducing the syngas H2/CO molar ratio from 3.75 to 1 (at CO2/CH4 ratio of 1 at 950 °C and 1 bar). The reduced carbon deposition has maximized the purity of the H2 produced in the consecutive steam stage thus increasing the process attractiveness for the combined production of syngas and pure hydrogen. Interestingly, the cofeeding of CO2 with CH4 at the fuel stage showed a stable syngas production over 12 hours continuously and maintained the H2/CO ratio at almost unity, suggesting that the oxygen carrier was exposed to simultaneous partial oxidation of CH4 with the lattice oxygen which was restored instantly by the incoming CO2. Furthermore, the addition of steam to the fuel stage could tune up the H2/CO ratio beyond 3 without carbon deposition at H2O/CH4 ratio of 1 at 950 °C and 1 bar; making the syngas from gas switching partial oxidation suitable for different downstream processes, for example, gas-to-liquid processes. The process was also demonstrated at higher pressures with over 70% fuel conversion achieved at 5 bar and 950 °C.

17.
Nanoscale ; 12(31): 16462-16473, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32478776

RESUMO

The effect of NaNO3 and its physical state on the thermal decomposition pathways of hydrated magnesium hydroxycarbonate (hydromagnesite, HM) towards MgO was examined by in situ total scattering. Pair distribution function (PDF) analysis of these data allowed us to probe the structural evolution of pristine and NaNO3-promoted HM. A multivariate curve resolution alternating least squares (MCR-ALS) analysis identified the intermediate phases and their evolution upon the decomposition of both precursors to MgO. The total scattering results are discussed in relation with thermogravimetric measurements coupled with off-gas analysis. MgO is obtained from pristine HM (N2, 10 °C min-1) through an amorphous magnesium carbonate intermediate (AMC), formed after the partial removal of water of crystallization from HM. The decomposition continues via a gradual release of water (due to dehydration and dehydroxylation) and, in the last step, via decarbonation, leading to crystalline MgO. The presence of molten NaNO3 alters the decomposition pathways of HM, proceeding now through AMC and crystalline MgCO3. These results demonstrate that molten NaNO3 facilitates the release of water (from both water of crystallization and through dehydroxylation) and decarbonation, and promotes the crystallization of MgCO3 and MgO in comparison to pristine HM. MgO formed from the pristine HM precursor shows a smaller average crystallite size than NaNO3-promoted HM and preserves the initial nano-plate-like morphology of HM. NaNO3-promoted HM was decomposed to MgO that is characterized by a larger average crystallite size and irregular morphology. Additionally, in situ SEM allowed visualization of the morphological evolution of HM promoted with NaNO3 at a micrometre scale.

18.
Phys Chem Chem Phys ; 22(17): 9272-9282, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307485

RESUMO

Perovskite-structured materials, owing to their chemical-physical properties and tuneable composition, have extended their range of applications to chemical looping processes, in which lattice oxygen provides the oxygen needed for chemical reactions omitting the use of co-fed gaseous oxidants. To optimise their oxygen donating behaviour to the specific application a fundamental understanding of the reduction/oxidation characteristics of perovskite structured oxides and their manipulation through the introduction of dopants is key. In this study, we investigate the structural and oxygen desorption/sorption properties of Sr1-xCaxFeO3-δ and SrFe1-xCoxO3-δ (0 ≤ x ≤ 1) to guide the design of more effective oxygen carriers for chemical looping applications at low temperatures (i.e. 400-600 °C). Ca A- or Co B-site substituted SrFeO3-δ show an increased reducibility, resulting in a higher oxygen capacity at T ≤ 600 °C when compared to the unsubstituted sample. The quantitative assessment of the thermodynamic properties (partial molar enthalpy and entropy of vacancy formation) confirms a reduced enthalpy of vacancy formation upon substitution in this temperature range (i.e. 400-600 °C). Among the examined samples, Sr0.8Ca0.2FeO3-δ exhibited the highest oxygen storage capacity (2.15 wt%) at 500 °C, complemented by excellent redox and structural stability over 100 cycles. The thermodynamic assessment, supported by in situ XRD measurements, revealed that the oxygen release occurs with a phase transition perovskite-brownmillerite below 770 °C, while the perovskite structure remains stable above 770 °C.

19.
ACS Appl Mater Interfaces ; 11(20): 18276-18284, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31038301

RESUMO

Hydrogen (H2) is a clean energy carrier and a major industrial feedstock, e.g., to produce ammonia and methanol. High-purity H2 can be produced efficiently from methane (CH4) using chemical looping-based approaches. In this work, we report on the development of a calcium-iron-based oxygen carrier (Ca2Fe2O5) doped with Ni or Cu and investigate its redox performance for H2 production when CH4 is used as the fuel. The experimental results suggest that the rapid formation of metallic Ni or Cu through exsolution promotes the reducibility of Ca2Fe2O5 with CH4. It was found that the reversible exsolution of Ni or Cu nanoparticles and their reincorporation in the Ca2Fe2O5 structure is key to avoid particle sintering and deactivation. Having the potential of converting a larger fraction of steam to H2 than pure iron oxide in addition to its higher reactivity with CH4, the doped calcium-iron-based oxygen carrier is a promising material for chemical looping H2 production.

20.
Nat Commun ; 9(1): 2408, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921929

RESUMO

Calcium looping, a CO2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO2 capacity and ensured a stable CO2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO2 uptake of the limestone-derived reference material by ~500%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...